FINAL ACCEPTED VERSION R-00555-2005.R2 ANATOMICAL AND FUNCTIONAL CHARACTERIZATION OF CLOCK GENE EXPRESSION IN NEUROENDOCRINE DOPAMINERGIC NEURONS Running Title: Clock gene expression in neuroendocrine DAergic neurons
نویسندگان
چکیده
Oscillations of gene expression and physiological activity in suprachiasmatic nucleus (SCN) neurons result from auto-regulatory feedback loops of circadian clock gene transcription factors. In the present experiment, we have determined the pattern of PERIOD1, PERIOD2 and CLOCK expression within neuroendocrine dopaminergic neurons (NDNs) of ovariectomized (OVX) rats. We have also determined the effects of per1, per2 and clock mRNA knockdown in the SCN with antisense deoxyoligonucleotides (AS-ODN) on DA release from NDNs. Diurnal rhythms of PER1 and PER2 expression in tuberoinfundibular dopaminergic (TIDA) and periventricular hypophyseal dopaminergic (PHDA) neurons, peaked at CT18 and CT12, respectively. Rhythms of PER1 expression in tuberohypophyseal dopaminergic (THDA) neurons were undetectable. Rhythms of PER2 expression were found in all three populations of NDNs, with greater levels of PER2 expression between CT6-CT12. AS-ODN injections differentially affected DA turnover in the axon terminals of the median eminence (ME), neural lobe (NL) and intermediate lobe (IL) of the pituitary gland, resulting in a significant decrease in DA release in the early subjective night in the ME (TIDA), a significant increase in DA release at the beginning of the day in the IL (PHDA) and no effect in the NL (THDA). AS-ODN-treatment induced a rhythm of DA concentration in the anterior lobe, with greater DA levels in the middle of the day. These data suggest that clock gene expression, particularly PER1 and PER2, within NDNs may act to modulate diurnal rhythms of DA release from NDNs in the OVX rat.
منابع مشابه
Anatomical and functional characterization of clock gene expression in neuroendocrine dopaminergic neurons.
Oscillations of gene expression and physiological activity in suprachiasmatic nucleus (SCN) neurons result from autoregulatory feedback loops of circadian clock gene transcription factors. In the present experiment, we have determined the pattern of PERIOD1 (PER1), PERIOD2 (PER2), and CLOCK expression within neuroendocrine dopaminergic (DAergic) neurons (NDNs) of ovariectomized (OVX) rats. We h...
متن کاملInsights into the Role of the Habenular Circadian Clock in Addiction
Drug addiction is a brain disease involving alterations in anatomy and functional neural communication. Drug intake and toxicity show daily rhythms in both humans and rodents. Evidence concerning the role of clock genes in drug intake has been previously reported. However, the implication of a timekeeping brain locus is much less known. The epithalamic lateral habenula (LHb) is now emerging as ...
متن کاملImportance of Floating Chondrons in Cartilage Tissue Engineering
BACKGROUND Dedifferentiation of chondrocytes remains a major problem for cartilage tissue engineering. Chondrocytes loss differentiated phenotype in in vitro culture that is undesired for repair strategies. The chondrocyte is surrounded by a pericellular matrix (PCM), together forming the chondron. PCM has a positive effect on the maintenance of chondrocyte phenotype during culture in compar...
متن کاملFunctional Inhibition of Nucleostemin Gene-Acoordinator of Self-Renewal Ability-In Bone Marrow Derived Mesenchymal Stem Cells by Rnai Strategy
Purpose: The aim is to downregulate the expression level of NS as an important factor in sustaining stem cells and certain types of cancer cells self-renewal ability in bone marrow derived mesenchymal stem cells by RNAi strategy and investigate the effects of absence of NS in these cells. Materials and Methods: Double strand NS-specific and control siRNA oligos were designed and transfected in...
متن کاملUNC79 and UNC80, Putative Auxiliary Subunits of the NARROW ABDOMEN Ion Channel, Are Indispensable for Robust Circadian Locomotor Rhythms in Drosophila
In the fruit fly Drosophila melanogaster, a network of circadian pacemaker neurons drives daily rhythms in rest and activity. The ion channel NARROW ABDOMEN (NA), orthologous to the mammalian sodium leak channel NALCN, functions downstream of the molecular circadian clock in pacemaker neurons to promote behavioral rhythmicity. To better understand the function and regulation of the NA channel, ...
متن کامل